前言

高并发经常会发生在有大活跃用户量,深圳福永赌场:用户高聚集的业务场景中,如:秒杀活动,定时领取红包等。

为了让业务可以流畅的运行并且给用户一个好的交互体验,我们需要根据业务场景预估达到的并发量等因素,来设计适合自己业务场景的高并发处理方案。

在电商相关产品开发的这些年,我有幸的遇到了并发下的各种坑,这一路摸爬滚打过来有着不少的血泪史,这里进行的总结,作为自己的归档记录,同时分享给大家。


服务器架构

业务从发展的初期到逐渐成熟,服务器架构也是从相对单一到集群,再到分布式服务。

一个可以支持高并发的服务少不了好的服务器架构,需要有均衡负载,数据库需要主从集群,nosql缓存需要主从集群,静态文件需要上传cdn,这些都是能让业务程序流畅运行的强大后盾。

服务器这块多是需要运维人员来配合搭建,具体我就不多说了,点到为止。

大致需要用到的服务器架构如下:

  • 服务器

  • 均衡负载(如:nginx,阿里云SLB)

  • 资源监控

  • 分布式

  • 数据库

  • 主从分离,集群

  • DBA 表优化,索引优化,等

  • 分布式

  • nosql

  • 主从分离,集群

  • redis

  • mongodb

  • memcache

  • cdn

  • html

  • css

  • js

  • image


并发测试

高并发相关的业务,需要进行并发的测试,通过大量的数据分析评估出整个架构可以支撑的并发量。

测试高并发可以使用第三方服务器或者自己测试服务器,利用测试工具进行并发请求测试,分析测试数据得到可以支撑并发数量的评估,这个可以作为一个预警参考,俗话说知己自彼百战不殆。

第三方服务:

  • 阿里云性能测试

并发测试工具:

  • Apache JMeter

  • Visual Studio性能负载测试

  • Microsoft Web Application Stress Tool


实战方案

通用方案

日用户流量大,但是比较分散,偶尔会有用户高聚的情况;

场景: 用户签到,用户中心,用户订单,等

服务器架构图:

合理的规范和使用nosql缓存数据库,根据业务拆分缓存数据库的集群,这样基本可以很好支持业务,一级缓存毕竟是使用站点服务器缓存所以还是要善用。


静态化数据

高并发请求数据不变化的情况下如果可以不请求自己的服务器获取数据那就可以减少服务器的资源压力。

对于更新频繁度不高,并且数据允许短时间内的延迟,可以通过数据静态化成JSON,XML,HTML等数据文件上传CDN,在拉取数据的时候优先到CDN拉取,如果没有获取到数据再从缓存,数据库中获取,当管理人员操作后台编辑数据再重新生成静态文件上传同步到CDN,这样在高并发的时候可以使数据的获取命中在CDN服务器上。

CDN节点同步有一定的延迟性,所以找一个靠谱的CDN服务器商也很重要

针对上面的技术我特意整理了一下,有很多技术不是靠几句话能讲清楚,所以干脆找朋友录制了一些视频,很多问题其实很简单,但是背后的思考和逻辑不简单,要做到知其然还要知其所以然。费分享给大家。

其他方案

对于更新频繁度不高的数据,APP,PC浏览器,可以缓存数据到本地,然后每次请求接口的时候上传当前缓存数据的版本号,服务端接收到版本号判断版本号与最新数据版本号是否一致,如果不一样就进行最新数据的查询并返回最新数据和最新版本号,如果一样就返回状态码告知数据已经是最新。